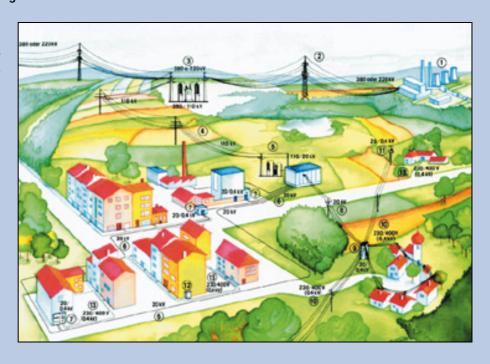
MAVOLOG 10 Systematic Power Quality Analysis

GOSSEN METRAWATT

- □ Events logger
- Measurement data recorder
- ☐ Power quality tester per EN 50160

Applications


Comprehensive Power Quality Monitoring

As a result of liberalization of energy markets, various qualities of electrical power offered at correspondingly higher or lower prices will certainly become available in the future.

This necessitates continuous voltage quality monitoring. As a rule, quality data are acquired, saved to a central database and managed in a decentralized fashion upon delivery to the customer. These data substantiate the quality of supplied electrical power and thus serve as a basis for accurate billing.

The following aspects are of special importance with respect to long-term recording of measured data for voltage quality from many, widely distributed measuring points:

- All quality relevant parameters must be simultaneously acquired and recorded over a long period of time in accordance with a power quality standard (EN 50160).
- Adequate synchronization of the points in time at which recording occurs is required in order to allow for a comparison of data from different measuring points.
- It must be feasible to utilize common communications technologies, including wireless transmission, for long distance data transmission.
- Quantities of data to be transmitted and managed must be kept as small as possible. For this reason, targeted preprocessing of measurement data must take place in the measuring instrument, i.e. prior to transfer to the analysis software.
- Periodic querying of recorded data should take place in an automated fashion.
- It must be possible to export data to other databases.

Systematic Voltage Quality Analysis

GMC-Instruments' business division for energy testing technology can provide you with a complete solution based upon the MAVOLOG series of instruments, allowing you to meet the challenges of a liberalized energy market as regards power quality monitoring.

Well coordinated, modular hardware and software components are supplemented with service offerings such as training seminars and technical support.

The EN 50160 Standard

EN 50160, "Voltage Characteristics in Public Distribution Networks", is intended to identify supply voltage characteristics as regards waveshape, voltage magnitude, frequency and symmetry of the three phase voltages at the point of delivery to the customer.

The standard specifies limit values for "normal operating conditions" for these parameters. Only those values which may not be fallen short of or exceeded during 95% of the monitored period are defined as limit values. Voltage dips or interruptions, e.g. resulting from defects within the system, cannot be sensibly defined by means of limit values. Parameters for values of this type can thus be freely configured in the analysis software.

Voltage Quality Criteria per EN 50160

Parameter	Characteristic	Measuring Interval	Observation Duration
Line frequency	50 Hz \pm 0.5 Hz for 95% of a given week, 50 Hz $+$ 4% / $-$ 6% for 100% of a given week	10 second mean value	1 week
Voltage fluctuation	Un \pm 10% for 95% of a given week, Un \pm 10 / $-$ 15% for 100% of a given week	10 minute mean value	1 week
Flicker	Long-term flicker severity Plt < 1 for 95% of a given week	2 h (per EN 61000-4-15)	1 week
Asymmetry	Relationship U (negative phase-sequence system) / U (positive phase-sequence system) < 2% for 95% of a given week	10 minute mean value	1 week
Harmonics	U _{H2} U _{H25} < limit value per table, THD < 8%	10 minute mean value for each harmonic (per EN 61000-4-7)	1 week
Voltage dips	< 10 1000 / year, of which > 50% have a duration < 1 s	10 ms TRMS value 40% Un \leq U _{10 ms} \leq 90% Un	1 year
Short voltage interruptions	< 10 1000 / year, of which > 70% have a duration < 1 s	10 ms TRMS value $U_{10 \text{ ms}} \le 1\%$ Un	1 year
Long voltage interruptions	< 10 50 / year with a duration of > 3 minutes		1 year
Transient overvoltage	(L - N) $<$ 6 kV / μ s ms		
Inter-harmonics and signal voltages	In progress		

Applications

Line Measurements and Power Disturbance Logging in Industrial Applications

Measured quantities derived from prevailing voltages are usually sufficient for the analysis of mains quality. However, devices which are also capable of acquiring current have proven themselves especially useful, in particular in industrial applications. This added feature opens up innumerable additional applications:

- Recording phase currents and power quantities as mean and maximum values allows you to recognize critical load conditions and to quantify remaining reserves within the electrical system.
- Tariffs are generally assigned to industrial customers by the utilities based upon 15 minute power peaks. By recording the corresponding power demand values, you can determine your own characteristic load profile in order to realize energy cost reductions by means of diminished load peaks.
- Energy consumption measurements within several distribution branches provide you with greater energy consumption clarity, and assure correct billing of costs to the appropriate departments or cost centers.
- The effectiveness of utilized compensation equipment can be tested, and associated cost saving potential can be determined with the help of reactive energy measurements.

- A greatly increased and ever growing number of non-linear consumers such as PCs, frequency converters and electronic energy-saving lamps is increasing the occurrence of line voltage distortion (harmonics). Increased losses at power transmission equipment and certain types of consumers, as well as overloading of compensation equipment and neutral conductors represent additional consequences. This can be prevented by measuring harmonic
- voltages and currents, and neutral conductor current.
- Simultaneous logging of the load current profile in the event of voltage failures allows you to draw conclusions regarding the cause of this most common type of disturbance in industrial electrical networks. This provides you with a basis for the clarification of guarantee issues, e.g. in the event of machine and equipment malfunctions, or for the implementation of corrective measures.

Power supply characteristics are made transparent with MAVOLOG series of instruments.

Measured Quantities for Periodic Storage to Memory and Online Measurement

Designation	U/M	Description	Interval Memory	Online Meas.	CCD	Designation	U/M	Description	Interval Memory	Online Meas.	CCD						
U1N, U2N, U3N	V (rms)	Phase-to-neutral voltage	Х	Х	Х	IN	A (rms)	Neutral conductor current	Х	Х	Х						
U12, U23, U31	V (rms)	Phase-to-phase voltage	Х	Х	Х	IK	A (rms)	Combined current	Х	Х	Х						
UNPE	V (rms)	Neutral-to-ground voltage	Х	Х	Х	I1H1, I2H1, I3H1	A (rms)	Fundamental current	Х	Х	Х						
UK	V (rms)	Combined voltage	Х	Х	Х	I1H2 - I1H40 I2H2 - I2H40	A (rma)	Harmonic currents	Х	v	Х						
U1H1,U2H1,U3H1	% Un	Fundamental voltage	Х	Х	Х	13H2 - 13H40	A (rms)	2 nd to 40 th harmonic	X	Х	۸						
U1H2-U1H40 U2H2-U2H40	0/ I lo	Harmonic voltages	Х	Х	Х	I1THD, I2THD, I3THD	%	Harmonic content of current	Х	Х	Х						
U3H2-U3H40	2 India 40 in parmonic	2 nd to 40 th harmonic	^	^	^	I1MAX, I2MAX, I3MAX	A (rms)	Maximum current (since reset)			Х						
U1THD U2THD, U3THD	%	Harmonic content of voltage	Х	Х	χ	P1, P2, P3, P	W	Active power, per phase and total	X	X	Х						
UB	%	Voltage asymmetry	Х	Х	Х	S	VA	3~ apparent power	Х	Х	Х						
UL1, UL2, UL3	counts	Number of voltage interruptions	Х		Х	Q	Var	3~ reactive power	Х	Х	Х						
ZTSXY1, ZTSXY2,						PF	W/VA	3~ power factor	Х	Х	Х						
ZTSXY3	counts	Number of voltage dips	Х		Х	PMAX	W	3~ max. active power (since reset)			Х						
PST1, PST2, PST3	_	Short-term flicker	Х	Х	Х	SMAX	VA	3~ max. app. power (since reset)			Х						
PLT1, PLT2, PLT3	-	Long-term flicker	Х	Х	Х	QMAX	var	3~ max. reac. power (since reset)			Х						
F	Hz	Frequency	Х	Х	Х	WP	Wh	3~ active energy (since reset)	Х		Х						
11, 12, 13	A (rms)	Phase current	Х	Х	Х	WQ	varh	3~ reactive energy (since reset)	Х		Х						

Select the ideal configuration for your application:

Analyzer Variants

MAVOLOG series instruments have been designed to allow for the selection of ideal configurations for all types of applications, from power generation to consumer applications, in combination with multiple instruments or as a stand-alone. Even the inexpensive basic model, the MAVOLOG 10L+FFT/FSA, provides for comprehensive disturbance recording and voltage quality analysis with integrated harmonic analysis (FFT) and flicker measurement (FSA).

Equipped with an LCD and additional current inputs, the top of the line MAVOLOG 10S+FFT/FSA is a universal measuring instrument which can be used for recording the characteristics of all

important measured quantities in 3-phase systems, and simultaneously acquires power disturbances and characteristics for the analysis of voltage quality.

Туре	MAVOLOG 10L +FFT/FSA	MAVOLOG 10N +FFT/FSA	MAVOLOG 10S +FFT/FSA	MAVOLOG 10S
FEATURES Voltage Order Number	M830S	M830P	M830R	M830V
Measurement inputs	3 ea. U _{L-L} /U _{L-N} & U _{N-PE}	3 ea. U _{L-L} /U _{L-N} & U _{N-PE}	3 ea. U _{L-L} /U _{L-N} & U _{N-PE}	3 ea. U _{L-L} /U _{L-N} & U _{N-PE}
Dips, interruptions	>10 ms	>10 ms	>10 ms	>10 ms
Swells	>10 ms	>10 ms	>10 ms	>10 ms
Asymmetry	•	•	•	•
Frequency	•	•	•	•
Harmonics	1 to 40 & THD	1 to 40 & THD	1 to 40 & THD	О
Flicker (Pst, Plt)	•	•	•	О
EN 50160 analysis	•	•	•	О
Current				
Measuring channels	O	О	3 ea. I _L & I _N	3 ea. I _L & I _N
Characteristics in case of voltage dips	О	О	Resolution: 10 ms	Resolution: 10 ms
Harmonics	O	О	1 to 40 & THD	О
Power / Energy				
Active power P1, P2, P3, P Σ	O	O	•	•
Apparent power S Σ	О	О	•	•
Reactive power $Q\Sigma$	O	О	•	•
Power factor PF Σ	О	О	•	•
Active energy WPΣ	0	О	•	•
Reactive energy $WQ\Sigma$	0	О	•	•
Alphanumeric LCD				
Measured values, analyses	О	10, selectable	10, selectable	10, selectable
Device configuration parameters	0	•	•	•

Accessory Components

Various accessory components for auxiliary power and communications functions are available for cost optimized utilization and ideal functionality of MAVOLOG power analyzers in consideration of prevailing conditions at the installation site.

This modular design concept allows for best-suiting adaptation or expansion of the system in order to fulfill changing requirements.

MAVOLOG PS/C (Z863D)

The MAVOLOG PS/C module (PS = power supply / C = converter) includes a power pack with a 24 V DC output for supplying power to as many as five MAVOLOG 10 instruments and one MAVOLOG BP, as well as a bidirectional RS 232 – RS 485 interface converter for communication between a PC using MAVOLOG control software, and each individual instrument.

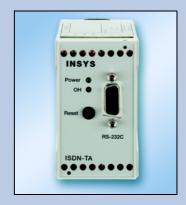
Up to 32 MAVOLOG 10 instruments can be connected to the RS 485 bus (max. length: 1 km, max. transmission speed: 115 kBps). The RS 485 and RS 232 interfaces are electrically isolated from each other, as well as from the power supply of the MAVOLOG PS/C, in order to assure maximum operating reliability and interference immunity, in particular for interconnected PCs.

The standard version is laid out for an input voltage of 230 V AC. The MAVOLOG PS/C Universal variant has a wide range input for 60 to 230 V AC / DC.

C232/485 (Z863F)

This battery powered RS 232 – RS 485 interface converter is also bidirectional and automatically switches transmission direction, but it does not include electrical isolation.

It can be used in cases where the MAVOLOG PS/C is not used to supply power to the MAVOLOG 10, and if the MAVOLOG 10 is only read out occasionally with the help of a notebook, e.g. after the occurrence of a power disturbance.



MAVOLOG BP (Z863E)

The MAVOLOG BP (BP = battery pack) is an uninterruptible DC power supply which, in combination with the MAVOLOG PS/C, automatically supplies power to connected MAVOLOG 10 instruments in the event of mains power failure.

Depending upon the number and type of instruments, they can be operated with a fully charged backup battery for up to 10 hours.

Integrated electronics regulate and monitor the charging process, assuring reliable availability of supply power and long backup battery service life.

MAVOLOG Dial-Up (Z864C)

The MAVOLOG dial-up modem connects the installed MAVOLOG power monitoring system to a master computer via public telephone lines for remote parameters configuration, control and data queries.

An SMS message can be transmitted to a cell phone or a fax machine etc., in the event of a power disturbance.

A practical solution for temporary mobile use:

The MAVOLOG Mobile Set (M830W)

Consisting of the following components:

- MAVOLOG 10S+FFT/FSA power quality analyzer
- MAVOLOG PS/C mains power pack and interface converter
- MAVOLOG BP battery pack

Wired and installed to a

• Sturdy carrying case (46 x 16 x 35 cm)

Included accessories:

- Connector cables for
 - Mains supply power
 - Voltage measurement inputs including alligator clips
 - RS 232 interface
- Parameters configuring and analysis software: METRAwin 10 for MAVOLOG

The case has ample additional space for stowing optionally available clip-on current transformers, e.g. 3 each Z3512 (1000/1 A).

Flexible Memory Organization

Do you require minimal data volume as well as detailed information?

The MAVOLOG 10 series fulfills these contradictory requirements,

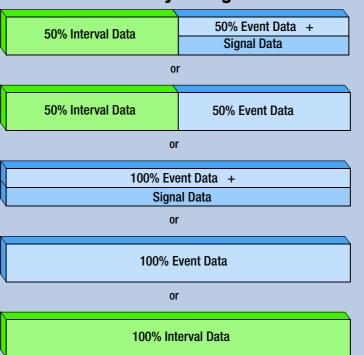
simultaneously if necessary. Available measurement data memory can be partitioned and/or used for the execution of various recording tasks. Ring mode or stop mode operation can be selected

individually for both partitions.

Three-step analysis of voltage quality measurements is made possible by the functionally differentiated storage areas:

Recording Capacity

for Selected Memory Configuration

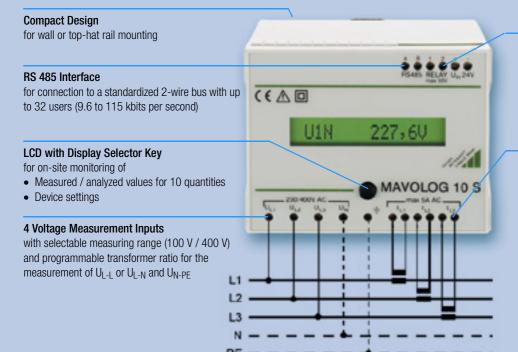

e.g. 55 days for 20 measured quantities at a 10 minute interval and > 600 events, each with voltage characteristics for the event causing phase

e.g. 27 days for 40 measured quantities at a 10 minute interval and > 25,000 events

More than 500 events, each together with 10 ms TRMS values for all 3 voltages within a 2 second time window

 $50,\!000$ events with date, time, type of event, phase and measured value

e.g. 85 days for 40 measured quantities at a 15 minute interval



Statistical Data

Daily Max. Value Memory

640 kB Non-Volatile Flash Memory

Relay Output

with temporary or continuous signal for indicating events

3 Current Inputs (MAVOLOG 10 S)

with selectable measuring range (1 A/5 A) and programmable transformer ratio for the measurement of I_{L} and indirect acquirement of I_{N} via an internal summation current transformer

Step 1:

The question as to whether or not mains supply voltage fulfills the quality criteria set forth in EN 50160 is answered on the basis of **statistical data**. Measurement data memory is dedicated entirely to, for example, the recording of system load characteristics.

Step 2: Statistical and events data provide the following information: "When and where have which intensities occurred, and have the limit values established by the standard nevertheless been maintained?" Measured data memory can be used to a given extent for recording measurement series.

Step 3: Statistics, events and interval memory are used for the performance of a comprehensive evaluation of voltage quality. Above and beyond the information mentioned before, a qualitative statement regarding actual voltage quality is made possible.

Interval Memory

Continuously records measurement data using an adjustable interval (1 or 10s, 1, 5, 10 or 15 min., 1 or 24 h).

Depending upon the instrument type, up to more than 300 measured quantities or analyses are available.

Of these, up to 40 data retrieval points can be defined for simultaneous recording. Individually for each data point, logging of the instantaneous value (1 s mean value), the minimum value, the maximum value or the mean value during the interval period can be selected.

Events Memory

Records line voltage anomalies chronologically. The following, simultaneously active trigger criteria can be configured to this end:

- Upper / lower 10 minute voltage limit value
- Upper / lower 10 ms voltage limit value
- * Fixed limit values per EN 50160

Nominal frequency with tolerance

- 10 minute asymmetry limit value
- Plt flicker limit value
- 10 minute voltage harmonics limit value
- 10 minute THD_U limit value
- N-PE voltage limit value

The following information is available for each event:

- Date and time
- Type of event / phase in which the event occurred
- Measured value (e.g. magnitude and duration of a voltage dip)

Signal Memory

Records time characteristics of voltage dips, failures or swells based upon 10 ms TRMS values within a 2 second window with a 25% pre-trigger.

Recording of either the affected voltage signal only, or all voltage signals can be selected, and recording of current signals can also be selected with the MAVOLOG 10 S.

Statistics Memory

Statistically acquires all relevant data for the exclusive performance of conformity evaluation with regard to EN 50160 based upon counter readings. These include, for example, the number of voltage dips (classified) and interruptions, as well as the total duration of overvoltages and undervoltages, or other limit value violations.

This memory is always active and requires no parameters configuration.

Its contents are continuously updated after resetting.

Daily Max. Value Memory

Records extreme values for line voltage each day at midnight, as well as for each harmonic which was maintained for 95% of the day.

With the MAVOLOG 10 S, measured maximum values for active and reactive power and phase current since the last reset, as well as energy consumption, are also saved to memory.

Device settings

Device settings are entered entirely via the data interface, by means of which they can also be queried.

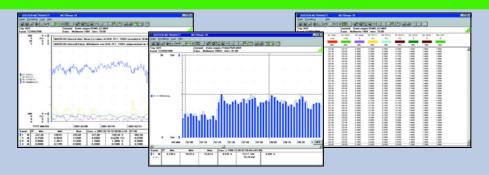
All settings are stored to a non-volatile flash RAM.

Online Measurement

Measured values can be queried online for all available quantities in order to acquire current system operating conditions.

Assigned recording tasks continue to run in the background without interruption.

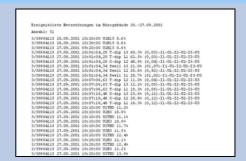
METRAwin 10 Parameters Configuring and Analysis Software


METRAwin for MAVOLOG 10 software is used for configuring parameters and visualizing data from the MAVOLOG 10.

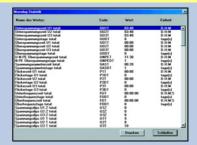
It includes the following functions:

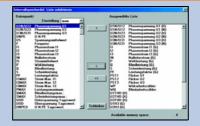
- Configuration of device parameters (connection and memory parameters)
- Memory mode initialization
- Print-out of complete or daily statistics
- · Visualization of interval data
- Events data formatted as a list and visualization of 10 ms TRMS values of respective event curves
- Representation of harmonics
- Online visualization of selected measured quantities


Interval data or online recorded measurement series appear at the display as a line graph or a bar graph with horizontal time axis, and can be analyzed with two pointers.


The data logger display shows time of day and measured values in numeric format in an easy to read table, and allows for data export to other programs via the clipboard.

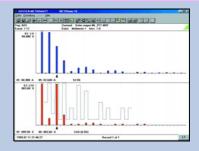
Event data read out from one or several MAVALOGs are listed in the order in which they occurred and can be printed out in report form. In the event of voltage dips, interruptions or swells, these are displayed in a Y-T diagram and can be analyzed with the cursors.


If the current signals is simultaneously available, conclusions may be drawn regarding the origin of the disturbance.


Complete statistics and daily maximum values provide information concerning all important factors at a single glance.

Menu driven **parameters configuring** is utilized for interconnected instruments as regards connection, recording parameters, memory configuration etc.

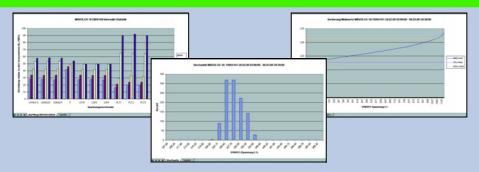
Application-specific device settings can be saved to configuration files for repeated use.



In the online mode, up to ten selectable measured quantities can be acquired at an interval of at least 1 second, visualized in various display formats and recorded to the hard disk.

When memory contents are read out, an additional, instantaneous recording of all harmonics is executed, and is represented as a frequency spectrum.

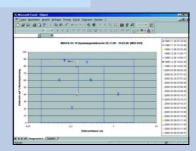
PC.doc-ACCESS Database and Report Generating Software


PC.doc-ACCESS for MAVOLOG 10 is a database program based on Microsoft Office products including WinWord, Excel and Access for the management, presentation and documentation of data

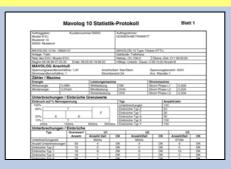
recorded with the MAVOLOG 10.

The database software allows for the management of data from any number of MAVOLOG 10 instruments, and for interactive or automated, time-controlled

querying with the help of a scheduler. The software provides for comprehensive, detailed long-term analysis of voltage


quality within a supply network including multiple measuring stations.

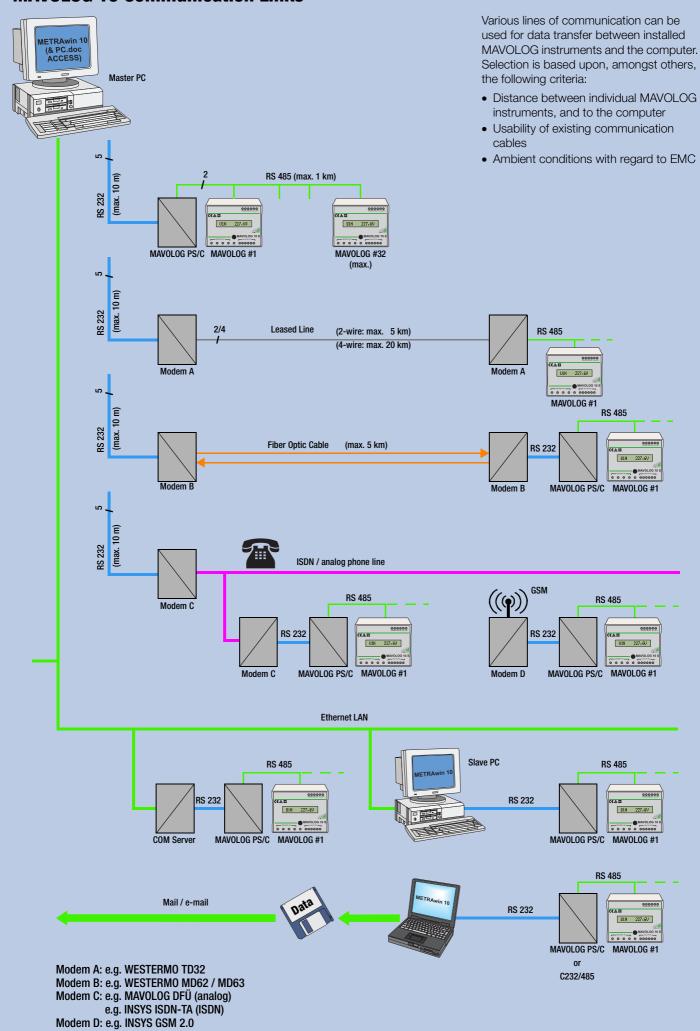
Graphics Processing with MS Excel


- · Sorting of measured values according to:
 - Time
 - Value (ascending / descending)
 - Frequency distribution
- Data analysis (with minimum values / mean values / 95% / maximum values) with reference to EN 50160 and adjustable limit values

- Time sorted lists of recorded events from several MAVOLOG 10 instruments during an adjustable observation period
- · Analysis of voltage dips relative to standard limit classes (ITIC, NRS048)
- Print out of events list with explanatory remarks

- · Analysis of statistical data with reference to EN 50160 and adjustable limit values
- Report printing with PASS/FALL evaluation in MS Word

· Scheduler for time controlled remote read-out of the MAVOLOG 10 with the help of METRAwin 10 via RS 485 interface, modem or Ethernet using a slave PC as a gateway


System Requirements

- Hardware
 - IBM compatible PC, 166 MHz Pentium or faster
 - 64 MB RAM
 - 1 available serial port
 - 20 MB available hard disk memory For modem operation:
 - 1 modem per MAVOLOG PS/C plus 1 per PC
- MS Windows 95, 98, NT 4.0 or 2000 MS Office 97 or 2000 Professional

Database Functions

- Entry and management of customer and system master data
- Read-in of data from MAVOLOG memory
- Online via METRAwin 10
- Offline by importing files from METRAwin 10
- Retrieval of innumerable measuring points and measurement series (sorted according to customer number, MAVOLOG instrument number and date of recording)

MAVOLOG 10 Communication Links

Technical Data

Voltore Management	d law.de	Maman	
Voltage Measuremer Type	4 high impedance AC voltage inputs with common	Memory Memory type	Non-volatile flash memory
1900	reference point for direct connection to 3~ low-	Setup Memory	TVOIT VOIGERO TREAT THOMAS Y
	voltage systems or system side voltage transformers	Function Data retention time	Storage of device settings min. 10 years
Measuring channels	Y: U _{1-N} , U _{2-N} , U _{3-N} , U _{N-PE}	Meas. Data Memory	Time to your
Wododing ondiniolo	Δ: U ₁₋₂ , U ₂₋₃ , U ₃₋₁ , U _{N-PE}	Function	Simultaneous storage of measurement series and
Measuring ranges	nominal Y/ Δ 057.7/100 V~ 0230/400 V~		events (qualitative and quantitative) to separate
	maximumY/Δ 075/130 V~ 0300/520 V~		storage areas: Interval memory: time-controlled recording of up to
Transformation ratio	Uratio range 0.0165,535 0.0165,535		40 measured quantities and analyses as measuring
Measuring resolution	@ Uratio=1 0.01 V 0.1 V		series with memory interval: 1 / 10 seconds
Overload withstand Input Impedance	600 V continuous $2.4 \text{ M}\Omega$		1 / 5 / 10 / 15 minutes 1 / 24 hours
Nominal frequency	50/60 Hz		Event memory: storage of event data (date and time,
Waveshape	Sinusoidal or distorted up to the 40 th harmonic		event type, event causing phase, value) triggered by
Current Measuremer	nt Inputs		measured values with adjustable limit values for
Туре	3 electrically isolated AC current inputs for direct current		voltage quality characteristics per EN 50160
	measurement or connection to a current transformer		Signal memory: event-triggered storage of 10 ms
Measuring channels	I _{L1} , I _{L2} , I _{L3} , I _N indirect via internal summation current transformer		TRMS value characteristics for voltage and current
Measuring ranges	nominal 0 1 A~ 0 5 A~		within a 2 second time window with a 0.5 second pre-trigger
medeamig rangee	maximum $0 \dots 1.2 \text{ A} \sim 0 \dots \overline{6} \text{ A} \sim$	Capacity	640 kB, can be partitioned
Transformation ratio	Iratio range 1 65,535 1 65,535	Operating modes	FIFO memory (ring mode)
Measuring resolution	@ Iratio=1 0.001 A 0.01 A		Overwrite protected memory (stop mode)
Overload withstand Input Impedance	12 A continuous, 50 A for 1 s 40 m Ω typ.	Data retention time	min. 10 years
Nominal frequency	50/60 Hz	Data interface	DI II
Waveshape	Sinusoidal or distorted up to the 40 th harmonic	Type	Bidirectional RS 485, 2-wire bus (conversion to RS 232 with MAVOLOG PS/C or
Measuring Functions	<u> </u>		C232/485 module)
Logging	Simultaneous sampling of voltage and current measur-	Functions	- Configuration and querying of device parameters
Compling rata	ing inputs with A-D conversion of instantaneous values		- Querying of currently measured data (online)
Sampling rate Sampling resolution	6.4 kHz 12 bit		 Querying of stored measurement data (offline) Firmware update
Voltage / Current		Bus capacity	max. 32 users (without booster)
Measuring method	RMS value measurement (RMS AC)	Transmission speed	9.6, 19.2, 57.6, 115.2 kBaud (kBits per second)
Measuring uncertainty Frequency	±(0.2% rdg. +3 digits)	Auxiliary Power	
Measuring range	45 65 Hz	Voltage range	18 to 36 V DC
Measuring resolution	0.01 Hz	Power consumption	max. 3 W
Measuring uncertainty	0.05 Hz	Hold-up time	Device function: 100 ms at 24 V DC typ. Real-time clock: >12 h; typ. 24 h
Power Measuring resolution	0.1 W (@ Uratio=1, Iratio=1)	Reference Conditions	
	±(0.4% rdg. +6 digits)	Ambient temperature	23°C ±2 K
Harmonics		Humidity	$50 \pm 5\%$ relative humidity
Measuring method	FFT (fast Fourier transformation), EN 61000-4-7	Auxiliary power	24 V DC ±10%
Measuring Range	1 st to 40 th harmonic and THD Class B per EN 61000-4-7	Waveshape	Sinusoidal, ≤ 1% harmonic distortion
Flicker	Oldoo D poi Liv O 1000 + 1	COSφ Transformation ratios	1
Measuring method	Flickermeter per EN 61000-4-15	Transformation ratios	Uratio = 1, Iratio = 1
Measuring Range Measuring uncertainty	Pst (10 min.), Plt (120 min.) per EN 61000-4-15 – 4% voltage fluctuation	Electrical Safety Safety class	II per EN 61010-1
	per EN 01000-4-13 – 4% voltage fluctuation	Overvoltage category	CAT III per EN 61010-1 for 300 V to earth
Display Display element	Alphanumeric LCD, 1 line (60 x 10 mm)	Test voltages	Meas. inputs to interface, aux. power, relay 3.7 kV~
Display functions	10 selectable measured quantities, settings and		Measurement inputs to housing 3.7 kV~
	device parameters, memory status active/inactive	Ambient Conditions	
Controls	1 key for scrolling through displays	Climatic category	3z/0/75/90% in compliance with VDI/VDE 3540
Real-Time Clock		Ambient temperature	Operation 0 +55° C Storage / transport -25 +75° C
Time format	Date DD.MM.YYYY	Humidity	max. 90% relative humidity, no condensation
Resolution	Time hh:mm:ss.00 10 ms	Deployment	Indoors, max. 2000 m above sea level
Drift	max. 1 minute per month (= 25 ppm)	Mechanical Design	
Adjustment /	PC system time is transferred via the data interface	Housing	Plastic "combinorm" housing for wall or top-hat rail
synchronization	synchronized within approximately 0.1 s.	Protection	mounting (EN 50022/32 mm) per DIN VDE 0470 T1 / EN 60529
Alarm Output		. 100000011	Housing IP 40
Function	1 isolated switching output for signaling events by	5.	Terminals IP 00
Switching element	continuous or pulse signal with adjustable duration Relay contact, NO or NC	Dimensions Weight	100 x 75 x 105 mm MAVOLOG 10 L/N approx. 280 g
Switching capacity	50 V / 0.5 A	Weight	MAVOLOG 10 L/N approx. 280 g MAVOLOG 10 S approx. 380 g
Allocation	Group alarm for all events	Terminals	Screw terminals, max. 2.5 mm ²

Designation	Description	Article No.
MAVOLOG 10L+FFT/FSA	3-phase voltage quality analyzer with harmonic and flicker analysis	M830S
MAVOLOG 10N+FFT/FSA	3-phase voltage quality analyzer with harmonic and flicker analysis and LCD	M830P
MAVOLOG 10S+FFT/FSA	3-phase voltage quality and power analyzer with harmonic and flicker analysis and LCD	M830R
MAVOLOG 10S	3-phase voltage quality analyzer with power and energy measurement and LCD, without harmonic and flicker analysis	M830V
MAVOLOG 10 Mobile Set	Portable 3-phase voltage quality and power analyzer consisting of MAVOLOG 10S+FFT/FSA, MAVOLOG PS/C and MAVOLOG BP installed to a rugged case, including mains cable, RS 232 cable, voltage measurement cables with alligator clips and METRAwin 10 software	M830W
MAVOLOG PS/C	Mains power pack, 230 V AC – 24 V DC and RS 232 – RS 485 converter for MAVOLOG 10	Z863D
MAVOLOG BP	Battery pack for emergency power supply to the MAVOLOG 10	Z863E
C232/485	Battery powered RS 232 – RS 485 converter	Z863F
MAVOLOG DFU	Analog modem for communication with the MAVOLOG via public telephone lines	Z864C
COM Server	Direct connection, RS 232 – Ethernet LAN	upon request
METRAwin 10 for MAVOLOG 10	Windows software (English / German) for device setup, as well as data querying and analysis	Z852D
PC.doc-ACCESS for MAVOLOG 10	Database software (English / German) based on Microsoft Word, Excel and Access for data management, analysis and documentation of MAVOLOG systems	Z852F

International Sales

AUSTRIA

GMC-Instruments GmbH Obere Viaduktgasse 28 A-1030 Wien

Phone +43 1 715 1500 +43 1 715 1505

e-mail: info@at.gmc-instruments.com

GMC-Instruments Italia S.r.I. Via Carlo Cattaneo, 9

ITALY

I-20035 Lissone (MI)

Phone +39 39 245 9080 Fax +39 39 245 9088 e-mail:info@it.gmc-instruments.com

SA GMC-Instruments Belgium NV 63 Chemin des deux Maisons, b.4 Tweehuizenweg 63, b.4 Buxelles B-1200 Brussel

Phone +32 2 762 9276 Fax +32 2 762 6176

NETHERLANDS

GMC-Instruments Nederland B.V. Daggeldersweg 18 NL-3449 AH Woerden

Phone +31 3484 211 55 Fax +31 3484 225 28

e-mail: info@nl.gmc-instruments.com

Fügnerova 1a CZ-67801 Blansko

CZECH REPUBLIC

GMC - měřicí technika s.r.o.

Phone +420 506 410 905 +420 506 410 907

e-mail: info@be.gmc-instruments.com e-mail: info@cz.gmc-instruments.com

Electromediciones Kainos, S.A. Poligon Industrial Est, Energía, 56 E-08940 Comellá de Llobregat

Barcelona Phone +34 934 742 333 Fax +34 934 743 470

FRANCE

GMC-Instruments France S.A. F-91349 Massy Cedex

Phone +33 1 6920 8949 Fax +33 1 6920 5492 e-mail: info@fr.gmc-instruments.com **GREAT BRITAIN**

GMC-Instruments (UK) Ltd. Priest House, Priest Street GB-Cradley Heath B64 6JN

Phone +44 1 384 63 8822 Fax +44 1 384 63 9168 e-mail: info@uk.gmc-instruments.com

SPAIN

e-mail: info@es.gmc-instruments.com

e-mail: info@ch.gmc-instruments.com

SWITZERLAND

GMC-Instruments Schweiz AG Glattalstrasse 63

Phone +41 1 302 3535 Fax +41 1 302 1749

Partners in:

Austria Czech Republic Iceland New Zealand Sweden France Singapore Turkey Belgium Denmark Great Britain India Luxembourg Netherlands Portugal Slovenia Switzerland USA Bulgaria Croatia Egypt Finland Greece Ireland Macedonian Norway Rumania Snain Svria Saudi Arabia South Africa Hungary Israel

German Sales

GMC-Instruments Deutschland GmbH

Thomas-Mann-Str. 16 - 20 90471 Nürnberg, Germany Phone: +49 (0) 9 11 86 02-111 Fax: +49 (0) 9 11 86 02-777 e-mail: info@gmc-instruments.com http://www.gmc-instruments.com

